Objectives

- List the factors that influence mortality rate
- Describe the nature of smoke inhalation and the fire environment
- Recognize the pulmonary and systemic changes that occur following smoke inhalation and burn injury
- List the effects of smoke inhalation injury on the upper and lower airways
- Identify methods to diagnose smoke inhalation injury and CO poisoning
Objectives

- Describe the methods used to determine the type and extent of burn injury
- Recognize the emergent treatment for smoke inhalation injury and CO poisoning
- Describe the airway and ventilatory support strategies for smoke inhalation and burn injury
- Describe the fluid, surgical, and nutritional support used in the treatment of burn injuries
Introduction

- Fire is a major source of injury, death, and economic loss
- Burns rank third most common cause of serious injury and death
 - 80% of deaths in residential fires
 - 5%–10% mortality due to asphyxiation, systemic poisoning, and respiratory tract injury
Introduction

- Prevalence of smoke inhalation among burn victims = 10%–35%
- Pulmonary complications according to the resuscitative phase
 - Early (first 24 hours)
 - Inhalation of toxic or hot gases
 - Fluid loss
 - Heavy sedation
Introduction

- Intermediate (2–7 days) post resuscitative phase
 - Analgesic-related respiratory dysfunction
 - Secretion retention
 - Airway obstruction
 - Atelectasis
 - ARDS
Introduction

- Late (> 7 days)
 - Pneumonia
 - Sepsis
 - Multiple organ dysfunction
 - Pulmonary embolism
 - Chronic pulmonary disease
Etiology

- Fire – residential fires – most common
- Superheated gases
- Scalding liquids
- Chemicals
- Electrical currents
Within 24 hours post-burn

- Carbon monoxide
 - Produced in fire environment, especially if
 - Oxygen levels are low
 - Combustion is incomplete
 - Rapidly absorbs into blood
Carbon monoxide

- It converts HbO₂ into HbCO
 - Normal HbCO: < 3%
 - Minor smoke inhalation: 10%–15%
 - Severe smoke inhalation: > 50%
- Compromise of O₂ transport
- Inability of Hb to transport O₂
- The Hb conversion and inhibition of O₂ release result in *Functional anemia*
Pathophysiology: Early Pulmonary and Systemic Changes

- Carbon monoxide
 - Skeletal and cardiac muscle dysfunction
 - Cerebral vasodilation
 - Rapid loss of consciousness and cerebral edema
 - Lethal CO poisoning typically occurs when COHb > 50%–60%
Pathophysiology: Early Pulmonary and Systemic Changes

- Hydrogen cyanide (HCN)
 - Linked to early and late death in burned patients
 - Easily transported to tissues through circulatory system; blocks tissue use of O2
 - Shift to anaerobic metabolism and elevated lactic acid production
Pathophysiology: Early Pulmonary and Systemic Changes

- Other considerations
 - Reduced oxygen transport
 - Cellular metabolic dysfunction
 - Release of inflammatory mediators
 - Vascular changes

▼

Compromise of nervous system, cardiovascular system, and skeletal muscle function
(Causes of death)
Other considerations

- **Thermal** injury to the respiratory tract
 - Typically confined to the face, oral and nasal cavities, pharynx, and trachea
 - Blistering, edema, accumulation of thick saliva, and glottic closure if severe
Pathophysiology: Early Pulmonary and Systemic Changes

- Other considerations
 - **Chemical** injury to the respiratory tract
 - Injuries extend into the lungs
 - Tracheobronchitis, bronchospasm, bronchorrhea, mucosal sloughing, airway obstruction
 - Alveolar de-recruitment - atelectasis
 - Pulmonary edema in severe cases
Pathophysiology: Early Pulmonary and Systemic Changes

- Other considerations
 - **Systemic** changes are associated with
 - Decline in O2 transport
 - Metabolic derangement
 - Release of inflammatory mediators
 - Fluid loss
Pathophysiology: Intermediate Pulmonary and Systemic

- Changes (2–7 days post-burn)
 - Signs of respiratory distress often after 24–48 hours
 - PVR returns to normal
 - Hypermetabolic state continues
 - Increased O2 consumption and CO2 production
Pathophysiology

- Airway edema resolves between day 2 and 4
- Increased mucus production
- Atelectasis, pleural effusion, acute lung injury
Pathophysiology: Late Pulmonary and Systemic Changes

- > 7 days post-burn
 - Hypermetabolic state for 1–3 wks
 - Infection is the most common complication in this period
 - Staphylococcus aureus
 - MRSA
 - Pseudomona aeruginosa
 - Pulmonary embolism can develop within 2 weeks of burn injury
Clinical Features

- Brain and heart = first to show dysfunction
- HbCO content is potential indicator of the dose of smoked inhaled
- SpO_2 should not be used since HbO$_2$ and HbCO have similar light absorption
Clinical Features

- Upper respiratory manifestations
 - Stridor – Hoarseness
 - Difficulty speaking – Chest retractions
- Severe form of inhalation injury
 - Cough – Dyspnea
 - Tachypnea – Cyanosis
 - Wheezing – Crackles
 - Rhonchi
Clinical Features: Chest Radiograph

- Frequently no signs in early period
- CT scans may be more useful to determine severity of pulmonary injury
Clinical Features: Arterial Blood Gases

- To trend the patient’s pulmonary insult
- Reduced PaO2 and SaO2
- Reduced PaO2/FiO2 (ALI vs ARDS)
- Respiratory alkalosis in early post-burn period
- Metabolic acidosis and respiratory failure are signs of life threatening injuries
Clinical Features: Hemodynamic Monitoring

- To optimize fluid resuscitation
- Monitor
 - CVP
 - PAP
 - CO
 - Urine output
Treatment

- Goals of respiratory care in burn patient
 - Achieve a patent airway
 - Secretion removal
 - Maintenance of effective ventilation
 - Preservation of lung volume
 - Adequate oxygenation
 - Maintenance of acid–base balance
Treatment: Airway

- Monitor for airway closure
- High Fowler’s position to reduce WOB
- Intubation if airway closure is anticipated
- Extubation if
 - Patient is improving
 - Maintain his/her own secretions
 - Cuff leak
 - Adequate ventilation
Treatment: Carbon Monoxide Poisoning

- Oxygen therapy: cornerstone of therapy (NRM)
- High-flow mask CPAP 5–10 cm H2O if
 - Patient with minimal upper airway thermal injury
 - Increasing dyspnea
 - Increasing hypoxemia
- Intubation if HbCO > 30%
Treatment

- Mechanical Ventilation if
 - Respiratory failure
 - Pneumonia
 - ALI/ARDS
 - Sedation and paralysis are necessary
Treatment: Fluid Balance

- To minimize development of
 - Shock
 - Renal failure
 - Pulmonary edema
Treatment: Prevention of Burn Complications

- Isolation technique
- Room pressurization
- Air filtration
- Wound covering
- Topical silver sulfadiazine
- Prophylactic antibiotics

Front line of infection defense